6. Конвейерная и суперскалярная обработка

 

  1. Параллелизм на уровне выполнения команд, планирование загрузки конвейера и методика разворачивания циклов
  2. Устранение зависимостей по данным и механизмы динамического планирования
  3. Аппаратное прогнозирование направления переходов и снижение потерь на организацию переходов

 

Аппаратное прогнозирование направления переходов и снижение потерь на организацию переходов

Буфера прогнозирования условных переходов

Простейшей схемой динамического прогнозирования направления условных переходов является буфер прогнозирования условных переходов (branch-prediction buffer) или таблица "истории" условных переходов (branch history table). Буфер прогнозирования условных переходов представляет собой небольшую память, адресуемую с помощью младших разрядов адреса команды перехода. Каждая ячейка этой памяти содержит один бит, который говорит о том, был ли предыдущий переход выполняемым или нет. Это простейший вид такого рода буфера. В нем отсутствуют теги, и он оказывается полезным только для сокращения задержки перехода в случае, если эта задержка больше, чем время, необходимое для вычисления значения целевого адреса перехода. В действительности мы не знаем, является ли прогноз корректным (этот бит в соответствующую ячейку буфера могла установить совсем другая команда перехода, которая имела то же самое значение младших разрядов адреса). Но это не имеет значения. Прогноз - это только предположение, которое рассматривается как корректное, и выборка команд начинается по прогнозируемому направлению. Если же предположение окажется неверным, бит прогноза инвертируется. Конечно такой буфер можно рассматривать как кэш-память, каждое обращение к которой является попаданием, и производительность буфера зависит от того, насколько часто прогноз применялся и насколько он оказался точным.

Однако простая однобитовая схема прогноза имеет недостаточную производительность. Рассмотрим, например, команду условного перехода в цикле, которая являлась выполняемым переходом последовательно девять раз подряд, а затем однажды невыполняемым. Направление перехода будет неправильно предсказываться при первой и при последней итерации цикла. Неправильный прогноз последней итерации цикла неизбежен, поскольку бит прогноза будет говорить, что переход "выполняемый" (переход был девять раз подряд выполняемым). Неправильный прогноз на первой итерации происходит из-за того, что бит прогноза инвертируется при предыдущем выполнении последней итерации цикла, поскольку в этой итерации переход был невыполняемым. Таким образом, точность прогноза для перехода, который выполнялся в 90% случаев, составила только 80% (2 некорректных прогноза и 8 корректных). В общем случае, для команд условного перехода, используемых для организации циклов, переход является выполняемым много раз подряд, а затем один раз оказывается невыполняемым. Поэтому однобитовая схема прогнозирования будет неправильно предсказывать направление перехода дважды (при первой и при последней итерации).

Для исправления этого положения часто используется схема двухбитового прогноза. В двухбитовой схеме прогноз должен быть сделан неверно дважды, прежде чем он изменится на противоположное значение. На рис. 6.8 представлена диаграмма состояний двухбитовой схемы прогнозирования направления перехода.

Рис. 6.8. Диаграмма состояния двухбитовой схемы прогнозирования

Двухбитовая схема прогнозирования в действительности является частным случаем более общей схемы, которая в каждой строке буфера прогнозирования имеет n-битовый счетчик. Этот счетчик может принимать значения от 0 до 2n - 1. Тогда схема прогноза будет следующей:

  • Если значение счетчика больше или равно 2n-1 (точка на середине интервала), то переход прогнозируется как выполняемый. Если направление перехода предсказано правильно, к значению счетчика добавляется единица (если только оно не достигло максимальной величины); если прогноз был неверным, из значения счетчика вычитается единица.
  • Если значение счетчика меньше, чем 2n-1, то переход прогнозируется как невыполняемый. Если направление перехода предсказано правильно, из значения счетчика вычитается единица (если только не достигнуто значение 0); если прогноз был неверным, к значению счетчика добавляется единица.

Исследования n-битовых схем прогнозирования показали, что двухбитовая схема работает почти также хорошо, и поэтому в большинстве систем применяются двухбитовые схемы прогноза, а не n-битовые.

Буфер прогнозирования переходов может быть реализован в виде небольшой специальной кэш-памяти, доступ к которой осуществляется с помощью адреса команды во время стадии выборки команды в конвейере (IF), или как пара битов, связанных с каждым блоком кэш-памяти команд и выбираемых с каждой командой. Если команда декодируется как команда перехода, и если переход спрогнозирован как выполняемый, выборка команд начинается с целевого адреса как только станет известным новое значение счетчика команд. В противном случае продолжается последовательная выборка и выполнение команд. Если прогноз оказался неверным, значение битов прогноза меняется в соответствии с рис. 6.8. Хотя эта схема полезна для большинства конвейеров, рассмотренный нами простейший конвейер выясняет примерно за одно и то же время оба вопроса: является ли переход выполняемым и каков целевой адрес перехода (предполагается отсутствие конфликта при обращении к регистру, определенному в команде условного перехода. Напомним, что для простейшего конвейера это справедливо, поскольку условный переход выполняет сравнение содержимого регистра с нулем во время стадии ID, во время которой вычисляется также и эффективный адрес). Таким образом, эта схема не помогает в случае простых конвейеров, подобных рассмотренному ранее.

Как уже упоминалось, точность двухбитовой схемы прогнозирования зависит от того, насколько часто прогноз каждого перехода является правильным и насколько часто строка в буфере прогнозирования соответствует выполняемой команде перехода. Если строка не соответствует данной команде перехода, прогноз в любом случае делается, поскольку все равно никакая другая информация не доступна. Даже если эта строка соответствует совсем другой команде перехода, прогноз может быть удачным.

Какую точность можно ожидать от буфера прогнозирования переходов на реальных приложениях при использовании 2 бит на каждую строку буфера? Для набора оценочных тестов SPEC-89 буфер прогнозирования переходов с 4096 строками дает точность прогноза от 99% до 82%, т.е. процент неудачных прогнозов составляет от 1% до 18% (см. рис. 6.9). Следует отметить, что буфер емкостью 4К строк считается очень большим. Буферы меньшего объема дадут худшие результаты.

Однако одного знания точности прогноза не достаточно для того, чтобы определить воздействие переходов на производительность машины, даже если известны время выполнения перехода и потери при неудачном прогнозе. Необходимо учитывать частоту переходов в программе, поскольку важность правильного прогноза больше в программах с большей частотой переходов. Например, целочисленные программы li, eqntott, expresso и gcc имеют большую частоту переходов, чем значительно более простые для прогнозирования программы плавающей точки nasa7, matrix300 и tomcatv.

Поскольку главной задачей является использование максимально доступной степени параллелизма программы, точность прогноза направления переходов становится очень важной. Как видно из рис. 6.9, точность схемы прогнозирования для целочисленных программ, которые обычно имеют более высокую частоту переходов, меньше, чем для научных программ с плавающей точкой, в которых интенсивно используются циклы. Можно решать эту проблему двумя способами: увеличением размера буфера и увеличением точности схемы, которая используется для выполнения каждого отдельного прогноза. Буфер с 4К строками уже достаточно большой и, как показывает рис. 6.9, работает практически также, что и буфер бесконечного размера. Из этого рисунка становится также ясно, что коэффициент попаданий буфера не является лимитирующим фактором. Как мы упоминали выше, увеличение числа бит в схеме прогноза также имеет малый эффект.

Рис. 6.9. Сравнение качества 2-битового прогноза

Рассмотренные двухбитовые схемы прогнозирования используют информацию о недавнем поведении команды условного перехода для прогноза будущего поведения этой команды. Вероятно можно улучшить точность прогноза, если учитывать не только поведение того перехода, который мы пытаемся предсказать, но рассматривать также и недавнее поведение других команд перехода. Рассмотрим, например, небольшой фрагмент из текста программы eqntott тестового пакета SPEC92 (это наихудший случай для двухбитовой схемы прогноза):

if (aa==2)

aa=0;

if (bb==2)

bb=0;

if (aa!=bb) {

Ниже приведен текст сгенерированной программы (предполагается, что aa и bb размещены в регистрах R1 и R2):

SUBI R3,R1,#2

BNEZ R3,L1 ; переход b1 (aa!=2)

ADD R1,R0,R0 ; aa=0

L1: SUBI R3,R2,#2

BNEZ R3,L2 ; переход b2 (bb!=2)

ADD R2,R0,R0 ; bb=0

L2: SUB R3,R1,R2 ; R3=aa-bb

BEQZ R3,L3 ; branch b3 (aa==bb).

...

L3:

Пометим команды перехода как b1, b2 и b3. Можно заметить, что поведение перехода b3 коррелирует с переходами b1 и b2. Ясно, что если оба перехода b1 и b2 являются невыполняемыми (т.е. оба условия if оцениваются как истинные и обеим переменным aa и bb присвоено значение 0), то переход b3 будет выполняемым, поскольку aa и bb очевидно равны. Схема прогнозирования, которая для предсказания направления перехода использует только прошлое поведение того же перехода никогда этого не учтет.

Схемы прогнозирования, которые для предсказания направления перехода используют поведение других команд перехода, называются коррелированными или двухуровневыми схемами прогнозирования. Схема прогнозирования называется прогнозом (1,1), если она использует поведение одного последнего перехода для выбора из пары однобитовых схем прогнозирования на каждый переход. В общем случае схема прогнозирования (m,n) использует поведение последних m переходов для выбора из 2m схем прогнозирования, каждая из которых представляет собой n-битовую схему прогнозирования для каждого отдельного перехода. Привлекательность такого типа коррелируемых схем прогнозирования переходов заключается в том, что они могут давать больший процент успешного прогнозирования, чем обычная двухбитовая схема, и требуют очень небольшого объема дополнительной аппаратуры. Простота аппаратной схемы определяется тем, что глобальная история последних m переходов может быть записана в m-битовом сдвиговом регистре, каждый разряд которого запоминает, был ли переход выполняемым или нет. Тогда буфер прогнозирования переходов может индексироваться конкатенацией (объединением) младших разрядов адреса перехода с m-битовой глобальной историей. Например, на рис. 6.10. показана схема прогнозирования (2,2) и организация выборки битов прогноза.

Рис. 6.10. Буфер прогнозирования переходов (2,2)

В этой реализации имеется тонкий эффект: поскольку буфер прогнозирования не является кэш-памятью, счетчики, индексируемые единственным значением глобальной схемы прогнозирования, могут в действительности в некоторый момент времени соответствовать разным командам перехода; это не отличается от того, что мы видели и раньше: прогноз может не соответствовать текущему переходу. На рис. 6.10 с целью упрощения понимания буфер изображен как двумерный объект. В действительности он может быть реализован просто как линейный массив двухбитовой памяти; индексация выполняется путем конкатенации битов глобальной истории и соответствующим числом бит, требуемых от адреса перехода. Например, на рис. 6.9 в буфере (2,2) с общим числом строк, равным 64, четыре младших разряда адреса команды перехода и два бита глобальной истории формируют 6-битовый индекс, который может использоваться для обращения к 64 счетчикам.

Насколько лучше схемы с корреляцией переходов работают по сравнению со стандартной духбитовой схемой? Чтобы их справедливо сравнить, нужно сопоставить схемы прогнозирования, использующие одинаковое число бит состояния. Число бит в схеме прогнозирования (m,n) равно 2m ( n ( количество строк, выбираемых с помощью адреса перехода.

Например, двухбитовая схема прогнозирования без глобальной истории есть просто схема (0,2). Сколько бит требуется для реализации схемы прогнозирования (0,2), которую мы рассматривали раньше? Сколько бит используется в схеме прогнозирования, показанной на рис. 6.10?

Раньше мы рассматривали схему прогнозирования с 4К строками, выбираемыми адресом перехода. Таким образом общее количество бит равно: 20 ( 2 ( 4K = 8K.

Схема на рис. 6.10. имеет 22 ( 2 ( 16 = 128 бит.

Чтобы сравнить производительность схемы коррелированного прогнозирования с простой двухбитовой схемой прогнозирования, производительность которой была представлена на рис. 6.8, нужно определить количество строк в схеме коррелированного прогнозирования.

Таким образом, мы должны определить количество строк, выбираемых командой перехода в схеме прогнозирования (2,2), которая содержит 8К бит в буфере прогнозирования.

Мы знаем, что

22 ( 2 ( количество строк, выбираемых

командой перехода = 8К

Поэтому

Количество строк, выбираемых командой

перехода = 1К.

На рис. 6.9 представлены результаты для сравнения простой двухбитовой схемы прогнозирования с 4К строками и схемы прогнозирования (2,2) с 1К строками. Как можно видеть, эта последняя схема прогнозирования не только превосходит простую двухбитовую схему прогнозирования с тем же самым количеством бит состояния, но часто превосходит даже двухбитовую схему прогнозирования с неограниченным (бесконечным) количеством строк. Имеется широкий спектр корреляционных схем прогнозирования, среди которых схемы (0,2) и (2,2) являются наиболее интересными.

Дальнейшее уменьшение приостановок по управлению: буфера целевых адресов переходов

Рассмотрим ситуацию, при которой на стадии выборки команд находится команда перехода (на следующей стадии будет осуществляться ее дешифрация). Тогда чтобы сократить потери, необходимо знать, по какому адресу выбирать следующую команду. Это означает, что нам как-то надо выяснить, что еще недешифрированная команда в самом деле является командой перехода, и чему равно следующее значение счетчика адресов команд. Если все это мы будем знать, то потери на команду перехода могут быть сведены к нулю. Специальный аппаратный кэш прогнозирования переходов, который хранит прогнозируемый адрес следующей команды, называется буфером целевых адресов переходов (branch-target buffer).

Каждая строка этого буфера включает программный адрес команды перехода, прогнозируемый адрес следующей команды и предысторию команды перехода (рис. 6.11). Биты предыстории представляют собой информацию о выполнении или невыполнении условий перехода данной команды в прошлом. Обращение к буферу целевых адресов перехода (сравнение с полями программных адресов команд перехода) производится с помощью текущего значения счетчика команд на этапе выборки очередной команды. Если обнаружено совпадение (попадание в терминах кэш-памяти), то по предыстории команды прогнозируется выполнение или невыполнение условий команды перехода, и немедленно производится выборка и дешифрация команд из прогнозируемой ветви программы. Считается, что предыстория перехода, содержащая информацию о двух предшествующих случаях выполнения этой команды, позволяет прогнозировать развитие событий с вполне достаточной вероятностью.

Рис. 6.11. Буфер целевых адресов переходов

Существуют и некоторые вариации этого метода. Основной их смысл заключается в том, чтобы хранить в процессоре одну или несколько команд из прогнозируемой ветви перехода. Этот метод может применяться как в совокупности с буфером целевых адресов перехода, так и без него, и имеет два преимущества. Во-первых, он позволяет выполнять обращения к буферу целевых адресов перехода в течение более длительного времени, а не только в течение времени последовательной выборки команд. Это позволяет реализовать буфер большего объема. Во-вторых, буферизация самих целевых команд позволяет использовать дополнительный метод оптимизации, который называется свертыванием переходов (branch folding). Свертывание переходов может использоваться для реализации нулевого времени выполнения самих команд безусловного перехода, а в некоторых случаях и нулевого времени выполнения условных переходов. Рассмотрим буфер целевых адресов перехода, который буферизует команды из прогнозируемой ветви. Пусть к нему выполняется обращение по адресу команды безусловного перехода. Единственной задачей этой команды безусловного перехода является замена текущего значения счетчика команд. В этом случае, когда буфер адресов регистрирует попадание и показывает, что переход безусловный, конвейер просто может заменить команду, которая выбирается из кэш-памяти (это и есть сама команда безусловного перехода), на команду из буфера. В некоторых случаях таким образом удается убрать потери для команд условного перехода, если код условия установлен заранее.

Еще одним методом уменьшения потерь на переходы является метод прогнозирования косвенных переходов, а именно переходов, адрес назначения которых меняется в процессе выполнения программы (в run-time). Компиляторы языков высокого уровня будут генерировать такие переходы для реализации косвенного вызова процедур, операторов select или case и вычисляемых операторов goto в Фортране. Однако подавляющее большинство косвенных переходов возникает в процессе выполнения программы при организации возврата из процедур. Например, для тестовых пакетов SPEC возвраты из процедур в среднем составляют 85% общего числа косвенных переходов.

Хотя возвраты из процедур могут прогнозироваться с помощью буфера целевых адресов переходов, точность такого метода прогнозирования может оказаться низкой, если процедура вызывается из нескольких мест программы или вызовы процедуры из одного места программы не локализуются по времени. Чтобы преодолеть эту проблему, была предложена концепция небольшого буфера адресов возврата, работающего как стек. Эта структура кэширует последние адреса возврата: во время вызова процедуры адрес возврата вталкивается в стек, а во время возврата он оттуда извлекается. Если этот кэш достаточно большой (например, настолько большой, чтобы обеспечить максимальную глубину вложенности вызовов), он будет прекрасно прогнозировать возвраты. На рис. 6.12 показано исполнение такого буфера возвратов, содержащего от 1 до 16 строк (элементов) для нескольких тестов SPEC.

Рис. 6.12. Точность прогноза для адресов возврата

Точность прогноза в данном случае есть доля адресов возврата, предсказанных правильно. Поскольку глубина вызовов процедур обычно не большая, за некоторыми исключениями даже небольшой буфер работает достаточно хорошо. В среднем возвраты составляют 81% общего числа косвенных переходов для этих шести тестов.

Схемы прогнозирования условных переходов ограничены как точностью прогноза, так и потерями в случае неправильного прогноза. Как мы видели, типичные схемы прогнозирования достигают точности прогноза в диапазоне от 80 до 95% в зависимости от типа программы и размера буфера. Кроме увеличения точности схемы прогнозирования, можно пытаться уменьшить потери при неверном прогнозе. Обычно это делается путем выборки команд по обоим ветвям (по предсказанному и по непредсказанному направлению). Это требует, чтобы система памяти была двухпортовой, включала кэш-память с расслоением, или осуществляла выборку по одному из направлений, а затем по другому (как это делается в IBM POWER-2). Хотя подобная организация увеличивает стоимость системы, возможно это единственный способ снижения потерь на условные переходы ниже определенного уровня. Другое альтернативное решение, которое используется в некоторых машинах, заключается в кэшировании адресов или команд из нескольких направлений (ветвей) в целевом буфере.

 

 



Используются технологии uCoz